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Abstract

Spherical plate-like structures are used in pressure vessels, spherical domes of power plants, and in many other
industrial applications. For non-destructive evaluation of such spherical structures, the mechanics of elastic wave
propagation in spherical curved plates must be understood. The current literature shows some valuable studies on
Rayleigh surface wave propagation in isotropic solids with spherical boundaries. However, the guided wave propa-
gation problem in an anisotropic spherical curved plate, which has not been studied before, is solved for the first time
in this paper.

The wave propagation, in both isotropic and anisotropic spherical curved plates, is investigated. The differential
equations of motion and the stress-free boundary conditions on the inner and outer surfaces of a hollow sphere are
approximately solved by a general solution technique. This solution technique was successfully utilized by the authors
for solving the wave propagation problem in cylindrical plates, in their earlier works. Dispersion curves for spherical
plates made of isotropic aluminum, steel, and anisotropic composite material are presented as well.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Plates with spherical curvature have numerous applications in industry. While many researchers have
studied the wave propagation problem in cylindrical curved plates, the spherical plates have not received
due attention in the non-destructive evaluation (NDE) literature and is studied here. This study will en-
hance the knowledge base of the NDE community as well as the seismologists and geophysicists where
anisotropy effects are significant.

Because of the importance of pipe and cylindrical pressure vessel inspections the elastic wave propa-
gation in cylindrical structures has received a great deal of attention (Gazis, 1959a,b; Grace and Goodman,
1966; Armenkas and Reitz, 1973; Qu et al., 1996; Liu and Qu, 1998a,b; Valle et al., 1999; Towfighi et al.,
2002). However, similar attention has not been given to spherical plates, even though this study is im-
portant for inspecting spherical pressure vessels, domes and earth crusts. Brekhovskikh (1968) studied the
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surface wave propagation in solids with curved boundary. In his study, cylindrical and spherical boundaries
were considered as special cases. Lanin (1964) and Buldyrev and Lanin (1966) also investigated some as-
pects of wave propagation in solids with spherical boundaries. All these studies considered only one stress-
free spherical boundary such as a solid sphere or a spherical void in an infinite isotropic medium. Shah et al.
(1969) analyzed the three-dimensional hollow sphere using shell-theory. Gaunaurd and Werby (1991a,b)
derived dispersion curves for fluid loaded spherical shells. Junger and Feit (1986), Kargl and Marston
(1990), and Uberal (2001) have also worked on isotropic spherical shells; however, anisotropic materials
have not been considered in any of the earlier studies. The presence of 21 elastic constants in the governing
differential equations requires a special solution method. This paper solves the guided wave propagation in
spherical curved plates for both isotropic and anisotropic materials for the first time with a general solution
technique (Towfighi, 2001). Towfighi et al. (2002) have successfully applied this technique to solve the
elastic wave propagation problem in cylindrical plates.

2. Fundamental equations

The spherical coordinate system and corresponding stress and strain components are shown in Fig. 1.
The equations of motion in spherical coordinates are given by

og,, Qoy, N 1 004, N 20, +cot(0)ao. — aop — G4y Ou, 0
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In the above equations, » stands for the radius in spherical coordinate system and takes values between
the inner radius a and the outer radius 4. § and ¢ denote the angular quantities and directions as shown in

Fig. 1. Spherical coordinate system and stress components.
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Fig. 1. ¢ and u denote stress and displacement components, respectively, and p indicates the mass density.
For general anisotropic materials 21 elastic constants, C;;, relate the stress components of Eq. (1), oy, with
the strain components, ¢y,
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The strain—displacement relations in spherical coordinates are as follows:
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Substitution of Egs. (2) and (3) into Eq. (1) yields the governing differential equations in terms of dis-
placement components. In order to eliminate the time (¢) from the final governing differential equations the
time dependence of the displacement components must be assumed. In the following, the waveform is
postulated and then the governing differential equations are derived.

3. Waveform

In the spherical coordinate system a constant ¢ value (see Figs. 1 and 2) defines a semicircle on the
surface of a sphere with radius . All points on this semicircle rotate about the z axis as ¢ is increased
continuously. The path for every point on this semicircle due to continuous increase of ¢ is a circle, and the
radius of this circle is the distance between the point and the z axis, which is equal to »sin(6). It is assumed
that the wave front on the surface of a spherical shell travels in this manner. In other words, the wave front
is toroidal. The toroidal waveform has been also assumed by Kargl and Marston (1990). This waveform
leads to consistent equilibrium equations. It should be noted here, that an incorrect waveform is not ca-
pable of satisfying the equations of motion and boundary conditions. Regardless of the availability of the
experimental and/or numerical data for comparison, the capability of the assumed waveform to satisfy
the boundary conditions and governing equations guarantees the existence of the waves, as assumed by the
waveform.

When the toroidal waveform is assumed the linear phase velocity is not constant and changes with 6. In
addition, the phase velocity has to be proportional to the radius of curvature to have a plane wave front in
the thickness direction, see Fig. 3. Therefore, if we define ¢, as the phase velocity on the outer surface of the
sphere with radius b, for other points having a radius r», the phase velocity would be:
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z
constant O plane

Fig. 2. Toroidal wave propagation—phase velocity is maximum at the equator, 0 = /2.

Fig. 3. Waves propagating from section T to R in a curved plate. Wave speed is proportional to the radius of curvature.

Vou () = cyr/b (4a)

For the flat plate geometry, the wave number k is defined as w/v,, because the curvature does not
change. However, for a curved plate, a similar wave number expression would be » dependent. To get rid of
the r dependence, the angular wave number p is defined as:

p=o/(v(r)/r) = ob/cy (4b)

The angular wave number p was initially introduced by Viktorov (1958).

For the toroidal wave travel path, as discussed above, the wave front position is a function of ¢ only
because all points with the same ¢ but different 0 values are in phase. Therefore, the exponential term
showing the propagating wave is independent of 6. In a spherical geometry, waves travel a constant angle
(¢) rather than a constant linear distance, in a given time interval. Note, that the linear distance varies with
0 and r. This is the reason for defining the angular wave number p of Eq. (4b). The toroidal wave travel
path length is defined as the product of p and ¢. Also, note that p¢p and wt are dimensionally identical. This
reasoning leads to the following waveforms.
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u (r,0,,1) = U, (r)e?*
up(r, 0, ¢, t) = U (r)eP?—! (5)

ug(r,0, 9,1) = Up(r)er?

U,(r), U(r) and Uf(r) represent the amplitude of vibration in the radial, and two tangential directions,
respectively and “i”’ is the imaginary number v/ —1.

4. Governing differential equations

Substituting the above definitions into equations of motion (1), one obtains the governing differential
equations as a function of 6. The obtained equations must be satisfied for all points on the sphere where 0
varies from zero to n. Note that if we substitute 0 = 7/2, then the solution gives the wave propagation
characteristics near the equator of the sphere. For studying wave propagation in a spherical plate segment,
from point A4, to A,, the two points 4; and 4, can always be aligned along the equator of a sphere by
adjusting the positions of the north and south poles. Therefore, for studying the wave propagation between
two points in a spherical plate segment, it is sufficient to solve the governing equations for 0 = n/2 only.
However, for studying the toroidal wave propagation in a complete sphere, the governing equations must
be satisfied for all values of 0. Since, in this paper, we are only interested in the wave propagation analysis in
a spherical plate segment, not the complete sphere, we simplify the problem by substituting 6 = n/2 in the
governing equation. This leads to the following differential equations:

— CssUy(r)p* — CssU,(r)p” — CasUy(r)p” +1Ci3Uy (r)p — iCo3 Uy (r)p — iC33 Uy (r)p
—iCssUp(r)p +1C15U, (r)p + 1C14 U, (r)p — 1Coa U, (r)p — 1Csu U, (r)p — iCss U, (r)p
+irCU ( W+ 1rC55U'( )p + 2irCysU(r)p + irC4 U] (r)p + irCse U, (r)p
— CisUp(r) + CosUp (r) + CssUs (r) + CasUy (r) + 1 pr? U, (r) + Cia Uy (r) + Ci3 Uy (r)

— CnU,(r) = 2C»U,(r) — Cy3U,(r) — CisUy(r) + CoUi(r) + rCisU(r) — rCaosUp(r)
= rCssU(r) + 2rCn UL(r) + rCiU/(r) — rCas U (r) — rCs Uy (r) + r2C15U}'(r)
+7r7Cp U/ (r) + 1 CisU/(r) = 0

— CouUs(r)p* — CasU,(r)p* — CaaUs(r)p* + 2iC36 Uy (r)p — iCas Uy (r)p +1Cos Uy (r)p
+1C3 U, (r)p + 2iCss U, (r)p + iCas Ui (r)p + irCss Uy (r)p + irCas Uy (r)p + irCis U (r)p (6)
+irCse U/ (r)p + 2irCas U/ (r)p + Coa U (r) — 2Cs6Uy(r) + 2Ca6U,(r) 4+ 2C36 U, (1)

+ P pw U, (r) — CyU,(r) — 2Ces U,(r) + 2rCse U}(r) + 3rCi6U.(r) + rCyU(r)
+rCsU(r) + 2rCee U/ (r) + r2C56Uf’-'(r) +1r2Ci6U! (r) + P Ces U/ (r) = 0

— C3Up(r)p* — C3sU,(r)p* — CaaU,(r)p* 4+ iC3sUy (r)p +1C U, (r)p + iIC33 U (r)p
+ 2iCssU,(r)p — iC36 U, (r)p + 2iCas U, (r)p + 2irCss Uy (r)p + irCi3 U (r)p
+irCss U (r)p + irCse U, (r)p + irCas U, (r)p + 1> par* Uy (r) + CaaUy (r) — 2Cs5 Uy ()
+2C5U.(r) + 2C35U,.(r) — CayU,(r) — 2Cs6U,(r) + 2rC55U}(r) +3rCisU(r) + rCysU/(r)
+rCssUL(r) + 2rCseU] (r) + 17 CssUy (r) + r*CisU! (r) + r* Css U/ (r) = 0

—_ O

In the above expressions the prime (') and double prime (”) indicate first and second derivatives, res-
pectively, with respect to the argument r.
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5. Boundary conditions

Enforcing the stress-free boundary conditions on inner and outer surfaces the following equations are
obtained for » = a¢ and b and 0 = n/2:

ipCi3Us(r) — CisUs(r) + CoU,(r) + Ci3U(r) + ipCisU,(r) + ipCraUy(r)
— CigUi(r) +rCisU(r) + rCuUl(r) + rCis U/ (r) = 0

ipCssUs(r) — CssUs(r) + Cos U, (r) + C36 U, (r) + ipCss U, (r) + ipCas U, (7)
— CosUi(r) +rCssUp(r) + rCi6Ul(r) + rCe U (r) = 0

ipCssUs(r) — CssUs(r) + CosU,(r) + Cs3sU,(r) + ipCssU,(r) + ipCas Uy (7)
— CssUi(r) + rC55U;(r) +rCysU/(r) + rCsqU/(r) = 0

6. Solution

It can be seen that all three differential equations are functions of three displacement components U, (),
U,(r), Uy(r) and their derivatives. It should also be noted that those are functions of the radius only and
appear in all equations. Therefore, three coupled differential equations and six boundary conditions must
be satisfied simultaneously.

To solve the equations, the unknown functions are expanded in Fourier Series (FS). Substitution of FS
expansions into the differential equations provides three algebraic equations that must be satisfied for the
entire problem domain. To satisfy the equations for a given number of FS terms weighted residuals inte-
gration with a linear weight function has been carried out.

R= / wf (r,x;))dr =0 (8)

Details of the above calculations are cumbersome to follow here; however, the form and dependency of
functions can be reviewed. In the above expression, w is the weight function, which is equal to one for a
point within the inner and outer surfaces of the plate and zero at the boundaries. The two segments of w
are:

r—a r—b

c—a Wz(r’c):c—b

©)

And r = c is the radius for the peak point. It is obvious that the integration will be performed in two parts.
The differential equations are a function of U,(r), U,(r), U,(r) and their derivatives, p, C;;, p, w and r, and
can be represented in the following form:

f[r, U,.(r),U[(r),Uf(r),p,w,p, Cif] =0 (10)

The FS expansion of amplitude functions introduces new parameters x;. For instance U,(r) must be re-
placed by:

U,(r):xo—l—i{cos{?}xn—&—sin{?}xmﬂ} (11)
=1

Derivatives of U,(r), U,(r) and U,(r) are obtained and substituted into the differential equations with
similar FS expressions. This leads to the following form for the expressions.

wi(r,c) =
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f[rapaw>p>xi7ci/] :0 (12)

Note that p is independent of r. Since r is the independent variable and other arguments are constants
by substituting (12) into (8) one obtains:

b
/ g[ripawapaxhcijvc]dr:() (13)

The radius corresponding to the peak value, ¢, can take any value between the inner and outer radii, each
resulting in one independent equation. Therefore, from every differential equation any number of algebraic
equations can be obtained, each corresponding to a specific value of c¢. After performing the integration for
a specific value of ¢ a typical equation can be shown as:

qLDawap7xi7Cij] :0 (14)

Note that Eq. (14) is equivalent to the three equations of motion; however, those are simple algebraic
equations. FS expansions of unknown functions transform the derivatives to simple sine and cosine terms,
and weighted residual integration removes the » dependence. Although it is an algebraic set of linear
equations the solution is not straightforward. In differential equations of motion (6) all terms contain one of
U.(r), U(r), Us(r) or their derivatives. This leads to a form for the above algebraic equations where all
terms contain x;, constituting a system of homogeneous equations. It should be noted that Egs. (14) must be
used to obtain the unknown functions, i.e., U.(r), U,(r) and U;(r). The above mentioned form for the
equations implies that more than one solution is available for the unknown functions. Therefore, the
general solution should be a linear combination of all solution functions that can be obtained. The general
solution should contain combinatorial parameters. The number of combinatorial parameters is the same as
the number of individual solutions. These combinatorial parameters are necessary to satisfy the boundary
conditions. Satisfaction of six boundary conditions requires six parameters and six equations. Therefore,
the necessary and sufficient number of combinatorial parameters is six, and this indicates the existence of
six independent solutions.

Substitution of solution functions into the differential equations leads to three equations, each con-
taining all of the FS parameters. In other words, all FS parameters for the three amplitude functions appear
in every equation. Because of this coupling, the value of the parameters obtained for FS expansion of U, (r),
U,(r) and U(r) are not independent and a solution must yield all parameters as one set of results. Since the
equations are linear and the results must be combined using combinatorial parameters only their relative
values are important. Therefore, one of the FS parameters can be assumed to be one. Then the relative
values for other FS parameters can be calculated. To avoid repetition in solving the equation sets, the usage
of LU factorization is beneficial. Each set of the parameter values defines a set of dependent shapes for the
above amplitude functions; these may be called basic shapes. Since the number of equations must be equal
to the number of unknowns, a specific number of weight functions are required.

The FS expansion for U,(r) can be written as Eq. (11), which contains 2m + 1 parameters or coeflicients.
With two other expressions for U,(r) and U, (r) the number of unknowns increases to 6m + 3. Eq. (14) can
then be written as:

apixXy appXxXy ... AigXs Alsp1Xs4l 0 Als+6Xs+6 0
ay1Xp QAppXy ... AygXy Aasi1Xe4l  © A2546Xs46 0

- (15)

as,lxl as,2x2 cee as,s-xs A s+1X5+1 : as,s+6xs+6 0
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where X, 1,Xs12,--.,X%46 represent the last sine and cosine terms of FS expansions. Assigning six inde-
pendent unit vectors to the last six parameters, as shown in Eq. (16),

x§+1 fo xf2+1 x§+1 fo fo 1 00000
xsl+2 xf+2 x3+2 x?+2 xf+2 x?+2 010000
xsl+3 xf+3 x§+3 xf+3 xf+3 xf+3 _]10 01000 (16)
xj+4 xf+4 x33‘+4 xf+4 xf+4 xf+4 000100
x31-+5 xf,+5 xf,+5 xf+5 x_f+5 x_f+5 000010
Xipe Xire X Xie X Xers 0000 01

one can obtain six independent solutions. Therefore, the number of equations has to be s = 6m — 3.
Consequently, the general solution can be obtained as a linear combination of the above solutions.

1 2 3 4 5 6
x% xé xé x‘lt x% xé
X3 X2 X3 X2 X3 X2

Al [ +A| | A | A | A4S | FAe| (17)
x! x> x x* X3 X6

5 s 5 s s s

The superscript for FS parameters shows the solution set number. Substitution of the obtained FS pa-
rameters into stress components on the inner and outer surfaces of the sphere leads to an eigenvalue
problem. The determinant of the coefficients of 4; should be zero for any point located on the dispersion
curves.

7. Numerical results

In order to check the new formulation, first a number of spherical plate problems with large radius and
small thickness are solved. Dispersion curves for such low curvature plates should be similar to the dis-
persion curves for flat plates. Available numerical results for flat plates matched very well with these results.
Additionally, dispersion curves reported for a steel sphere submerged in water are compared with the re-
sults obtained using the software prepared for this study. Good agreement between the results ensures the
validity of the new formulation technique as well as the computer program. Then a number of dispersion
curves are obtained for isotropic and anisotropic spherical plates of different curvatures.

For the isotropic case, aluminum and steel plates are studied. Material properties of aluminum and steel
are shown in Figs. 4 and 6, respectively. For the anisotropic case, a fiber reinforced composite material is
considered with the mass density, p = 1580 kg/m?, and the following constitutive matrix:

Too 12862 69 69 0 0 0 Ch
Oop 6.9 1495 7.33 0 0 0 e
O | _ 69 733 1495 0 0 0 € (18)
oo 0 0 0 381 0 0 2ey,
O g 0 0 0 0 673 0 2ey,
T0¢ 0 0 0 0 0 6.73 2€9¢

Stiffness values are given in GPa.
When the fiber orientation is changed to 45° relative to the wave propagation direction, the constitutive
matrix after transformation changes to:
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Fig. 4. Dispersion curves for 1 mm thick isotropic flat aluminum plate (Mal and Singh, 1991).

Goi 459675 32.5075 7115 0 0  —283125 esp
G0 325075 459675  7.115 0 0  —28.3125 eon
o | _ | 7115 7115 1495 0 0 0215 | | e (19)
o 0 0 0 527 —146 0 2ey,
Gor 0 0 0 —146 527 0 2ey
Gos ~28.3125 —283125 0215 0 0 323375 2egy

Similarly, when fibers are going in the 90° direction, relative to the wave propagation direction, then the
constitutive matrix takes the following form:

O 1495 69 733 0 0 0 Cos
Goo 69 1282 69 0 0 0 e
Op | _ | 7.33 69 1495 0 0 0 e (20)
Oor 0 0 0 673 0 0 2eq,
Ogr 0 0 0 0 381 O 2ey,
Go¢ 0 0 0 0 0 6.73 260¢

It can be seen that for inclined orientation of fibers the constitutive matrix does not correspond to the
transversely isotropic case and requires a more general solution technique. Dispersion curves for a flat
aluminum plate are given in Mal and Singh (1991), see Fig. 4. Curves for the same plate thickness and
material properties but having a spherical curvature with an outer radius of 100 m are generated by the
proposed formulation as shown in Fig. 5a. This figure is generated with m = 8 (or 8 terms of the Fourier
series expansion, see Eq. (9)). A comparison of Figs. 4 and 5a shows an excellent match between the two.
Therefore, one can rely on the new formulation and computed results.

Fig. 5b shows the dispersion curves for an aluminum spherical plate when the outer radius of curvature
of the plate is reduced from 100 m in Fig. 5a to 2.5 mm. One can see in these figures that the number of
modes increases as the plate curvature increases. Fig. Sc shows the dispersion curves for the wave prop-
agation in the circumferential direction of a cylindrical aluminum plate having a 2.5 mm outer radius of
curvature. It was computed following the formulation presented in Towfighi et al. (2002). Note that except
for the shape of the plate (for Fig. 5b it is spherical, and for Fig. 5c it is cylindrical) there is no difference
between the plates. Both are made of aluminum and have the same thickness and outer radius. Dispersion
curves in Fig. 5b and c are almost identical except at low frequencies (below 1 MHz). Some difference is
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Fig. 5. (a) Dispersion curves generated by the proposed method for a large radius aluminum spherical plate, m = 8, plate thickness = 1
mm, sphere outside radius = 100 m. Material properties are given in Fig. 4. (b) Dispersion curves generated by the proposed method
for a small radius spherical plate. Aluminum plate thickness =1 mm. Sphere outside radius =2.5 mm, m = 8§, material properties are
given in Fig. 4. (c) Same as (b) but for waves propagating in the circumferential direction of a cylindrical curved plate.

10

Phase Velocity (km/sec)

0 2 4 6 8 10
Frequency (MHz)
p=7932g/cc ¢1 =596 km/sec ¢z =3.26 km/sec

Fig. 6. Dispersion curves for isotropic flat steel plate, plate thickness =1 mm, material properties are as shown.

expected since for cylindrical plates there is no curvature in the plate geometry in the direction perpen-
dicular to the wave propagation direction while for the spherical plate a curvature in the plate geometry
exists in the direction perpendicular to the wave propagation direction. This geometry change does not
affect the high frequency, low wavelength waves but the low frequency, long wavelength signals are affected
by this change in geometry.
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Fig. 6 shows dispersion curves for a flat steel plate. Its material properties are given in the figure. Fig. 7a
and b show dispersion curves for the spherical steel plate with the 100 m outer radius (Fig. 7a) and 2.5 mm
outer radius (Fig. 7b) with material properties that are the same as the flat steel plate. Figs. 6 and 7a match
very well. Fig. 7a is computed with m = 8, like Fig. 5a. Fig. 7b shows more curves than Fig. 7a—this
observation is similar to our findings in Fig. 5a and b. Fig. 7c shows dispersion curves for cylindrical curved
plate for waves propagating in the circumferential direction. Like Fig. 5b and c, differences between Fig. 7b
and c¢ are observed only at low frequencies.

Fig. 8a shows dispersion curves obtained by Gaunaurd and Werby (1991a) for a steel sphere submerged
in water. Using the same steel properties and curvature (thickness to outer radius ratio =0.05), dispersion
curves for a spherical plate segment are obtained by the current method, and presented in Fig. 8b. Small
differences between the two sets of dispersion curves are attributed to the fact that in one case (Fig. 8a) a
complete sphere is submerged in water, and for the other case (Fig. 8b) the spherical plate segment is placed
in a vacuum, not in water.

The dispersion curves for anisotropic materials are studied next. Dispersion curves for anisotropic flat
plates are available in the literature (Karim et al., 1990; Rose, 1999). In this paper our results are compared
with those given in Rose (1999). Fig. 9 shows dispersion curves for a flat anisotropic plate when fibers are
oriented parallel to the wave propagation direction. Fig. 10a shows dispersion curves for the same an-
isotropic material when formed as a spherical plate with 100 m outer radius. Like other curves this is also
generated with m = 8, and show good matching with Fig. 9. Fig. 10b and c show the effect of the higher
curvature on the dispersion curves. These two plots are generated for the same material properties but
different plate geometries—for Fig. 10b the outer radius of the sphere is 5 mm and for Fig. 10c it is 2.5 mm.
Like the isotropic case, the number of modes increases as the plate curvature increases. Dispersion curves

vph km/sec Vvph Jm/sec

10 \\ 0 N \.\_}\ . N .
L ALLD TR

@

£ (MHZz)

(c) 2 1 6 8 10

Fig. 7. (a) Dispersion curves generated by the proposed method for a large radius spherical steel plate, m = 7, plate thickness =1 mm,
sphere outside radius = 100 m. Material properties are given in Fig. 6. (b) Dispersion curves generated by the proposed method for
a small radius spherical plate. Steel plate thickness=1 mm. Sphere outside radius =2.5 mm, m = 8, material properties are given in
Fig. 6. (c) Same as Fig. 7b but for waves propagating in the circumferential direction of a cylindrical curved plate.



5506 S. Towfighi, T. Kundu | International Journal of Solids and Structures 40 (2003) 5495-5510

] vph (Jm/sec)

P

< h'=5% 35 i

301 (STEEL) i

1 30 bt

E ! i

] 25 ll v \

. S A

] 20 i i \

] i f

] 15 ' ] \

1 \ i

10 10 SO ..,

o IR N

o]

2] f (MHz)
(a) (b) 0.2 0.4 0.6 0.8 1 1.2

Fig. 8. (a) Dispersion curves for a steel sphere, submerged in water, after Gaunaurd and Werby (1991a). Wall thickness to outer radius
is 0.05. Density, P-wave speed and S-wave speed for steel are 7.7 gm/cc, 5.95 km/s and 3.24 km/s, respectively. Those values for water
are 1 gm/cc, 1.4825 km/s and zero. Horizontal axis shows the non-dimensional frequency, &, = (w/c;)a. For 95 mm inner radius
sphere, non-dimensional frequency = 500 corresponds to 1.242 MHz frequency, for this steel plate. (b) Dispersion curves for a spherical
steel plate segment in vacuum. Steel properties are identical to those given in (a). Wall thickness to outer radius is 0.05.
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Fig. 9. Dispersion curves for a unidirectional composite plate for waves propagating in the fiber direction (x-axis direction, 0°).
Material properties are given in Eq. (18), p = 1580 kg/m® (Rose, 1999).

for the circumferential direction wave propagation in a cylindrical plate with 2.5 mm outer radius are
shown in Fig. 10d. Note that except at low frequencies (less than 1.5 MHz) the dispersion curves in Fig. 10¢
and d are identical.

Fig. 11 shows dispersion curves for an aniostropic flat plate when waves propagate perpendicular to the
fiber direction. Fig. 12a, b and ¢ show dispersion curves for spherical plates of outer radius 100 m, 5 mm
and 2.5 mm, respectively, for fiber and wave propagation directions perpendicular to each other. Fig. 12a
matches very well with Fig. 11. Fig. 12d shows the dispersion curves for the circumferential direction wave
propagation in a cylinder of 2.5 mm outer radius when the fibers run along the axial direction. A com-
parison between Fig. 12c and d show difference in the dispersion curves only in the low frequency range 0-1
MHz.

Similar computations have been carried out for the 45° fiber direction relative to the wave propagation
direction. Flat plate results from the literature are shown in Fig. 13a and b. Spherical plate results for the
outer radius equal to 100 m, 5 mm and 2.5 mm are shown in Fig. 14a, b and ¢ respectively. Like the
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Fig. 10. (a) Dispersion curves generated by the proposed method for a large radius spherical plate, material properties are same as
those used in Fig. 9, m = 8, plate thickness = 1 mm, outer radius of the curved plate = 100 m. (b) Dispersion curves generated by the
proposed method for same material properties as those used in Fig. 9, plate thickness = 1 mm, outer radius of the curved plate =5 mm,
m = 8. (c) Dispersion curves generated by the proposed method for same material properties as those used in Fig. 9, plate thickness = 1
mm, outer radius of the curved plate =5 mm, m = 15. (d) Same as (c) but for waves propagating in the circumferential direction of a
cylindrical curved plate.
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Fig. 11. Dispersion curves of unidirectional composite plate for waves propagating perpendicular to the fiber direction (x-axis
direction, 90°). Material properties are given in Eq. (20). Plate thickness =1 mm, p = 1580 kg/m? (Rose, 1999).

previous cases Fig. 14a matches exactly with Fig. 13 when Fig. 13a and b are superimposed. Dispersion
curves gradually change from Fig. 14a—c. Dispersion curves of Fig. 14d are generated when the spherical
plate for Fig. 14c is changed to a cylindrical plate, with waves propagating in the circumferential direction
and the fibers are oriented at 45°. Dispersion curves of Fig. 14c and d are almost identical for frequencies
greater than 3 MHz.
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Fig. 12. (a) Computed dispersion curves for an anisotropic large radius spherical plate, when fiber and wave propagation directions are
perpendicular to each other. Material properties are given in Eq. (20). Plate thickness =1 mm. Outer radius of the spherical curved
plate =100 m, m = 8. (b) Computed dispersion curves for an anisotropic small radius spherical plate, when fiber and wave propagation
directions are perpendicular to each other. Material properties are given in Eq. (20). Plate thickness =1 mm. Outer radius of the
spherical plate=5 mm, m = 8. (c) Computed dispersion curves for an anisotropic small radius spherical plate, when fiber and wave
propagation directions are perpendicular to each other. Material properties are given in Eq. (20). Plate thickness = 1 mm. Outer radius

of the spherical plate=2.5 mm, m = 8. (d) Same as (c) but for a cylindrical curved plate when waves are propagating in the cir-
cumferential direction.
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Fig. 13. (a) Dispersion curves for symmetric modes for a unidirectional composite plate for waves propagating in 45° to the fiber
direction. Plate thickness = 1 mm and p = 1580 kg/m? (Rose, 1999). (b) Dispersion curves for antisymmetric modes for a unidirectional
composite plate for waves propagating in 45° to the fiber direction. Plate thickness =1 mm and p = 1580 kg/m® (Rose, 1999).

It is interesting to note that for high curvature (outer radius to thickness ratio = 2.5) the differences in the
dispersion curves, generated by isotropic spherical and cylindrical plates, disappear beyond 1 MHz. For
anisotropic plate however, this frequency depends on the fiber direction. For 45° fiber orientation, up to 3
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Fig. 14. (a) Computed dispersion curves for an anisotropic large radius spherical plate for waves propagating in 45° to the fiber di-
rection. Material properties are given in Eq. (19). Plate thickness=1 mm. Outer radius of the spherical plate=100 m, m = 8. (b)
Computed dispersion curves for an anisotropic small radius spherical plate for waves propagating in 45° to the fiber direction. Material
properties are given in Eq. (19). Plate thickness = 1 mm. Sphere outer radius =5 mm, m = 8. (¢) Computed dispersion curves for an
anisotropic small radius spherical plate for waves propagating in 45° to the fiber direction. Material properties are given in Eq. (19).
Plate thickness = 1 mm. Sphere outer radius =2.5 mm, m = 15. (d) Same as (c) but for a cylindrical curved plate when waves propagate
in the circumferential direction.

MHz frequency, differences between the dispersion curves generated by the cylindrical and spherical curved
plates are noticeable.

8. Conclusion

The elastic wave propagation problem in spherical curved plates is solved here for both isotropic and
anisotropic plate materials. For the anisotropic plate modeling unidirectional fiber reinforced composite
plates are considered with fibers running parallel, perpendicular, and at an angle of 45°, relative to the wave
propagation direction. Dispersion curves generated by spherical and cylindrical plates are identical at
higher frequencies. The frequency beyond which these two sets of dispersion curves are identical depends on
the fiber orientation direction. Among the three cases studied here (0°, 45° and 90° orientations of fibers) it
is found that the difference in the dispersion curves generated by cylindrical and spherical plates is maxi-
mum for the 45° orientation of fibers.
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